SPECTRAL DECOMPOSITION WITH MONOTONIC SPECTRAL RESOLVENTS

RY

I. ERDELYI AND WANG SHENGWANG

ABSTRACT. The spectral decomposition problem of a Banach space over the complex field entails two kinds of constructive elements: (1) the open sets of the field and (2) the invariant subspaces (under a given linear operator) of the Banach space. The correlation between these two structures, in the framework of a spectral decomposition, is the spectral resolvent concept. Special properties of the spectral resolvent determine special types of spectral decompositions. In this paper, we obtain conditions for a spectral resolvent to have various monotonic properties.

- 1. Introduction. A spectral decomposition of a Banach space X, by a bounded linear operator $T: X \to X$,
 - (a) expresses X as a finite linear sum of T-invariant subspaces X_i ;
 - (b) represents T as the sum of its restrictions $T_i = T \mid X_i$;
- (c) localizes the spectrum $\sigma(T_i)$ of each T_i in the closure of a given open set G_i , which intersects the spectrum $\sigma(T)$ of T.

The relationship between the invariant subspaces X_i and the open sets G_i , formalized under the name of spectral resolvent, has been the study of some recent works [1, 2, 8]. In this paper, we investigate conditions under which the spectral resolvent possesses certain specific monotonic properties. Such conditions and subsequence properties infer the corresponding spectral decompositions.

For a bounded linear operator T, which maps an abstract Banach space X over the complex field $\mathbb C$ into itself, we use the following notation: spectrum $\sigma(T)$, point spectrum $\sigma_p(T)$, resolvent set $\rho(T)$, the unbounded component of the resolvent set $\rho_{\infty}(T)$, and the resolvent operator $R(\cdot;T)$. If T has the single valued extension property then, for $x \in X$, $\sigma_T(x)$ denotes the local spectrum, $\rho_T(x)$ the local resolvent set and $x(\cdot)$ the local resolvent function.

For a subspace (closed linear manifold) Y of X, $T \mid Y$ is the restriction of T to Y and T/Y is the coinduced operator on the quotient space X/Y. Inv T denotes the lattice of the invariant subspaces of X under T. T^* is the conjugate of T. If A is a subset of X then A^{\perp} denotes the annihilator of A in the dual space X^* . Given a set S, we write \overline{S} for the closure, S^c for the complement, $d(\lambda, S)$ for the distance from a point λ to S, and express by $\operatorname{cov} S$, the collection of all finite open covers of S. $\mathfrak S$ stands for the family of all open subsets of $\mathbb C$. An open set Δ is called a Cauchy

Received by the editors December 28, 1981 and, in revised form, September 28, 1982. This paper, under the title *Monotonic spectral resolvents* has been presented at a special session on Operator Theory of the 793rd meeting of the American Mathematical Society at Bryn Mawr, Pennsylvania, March 16–17, 1982. 1980 *Mathematics Subject Classification*. Primary 47B40; Secondary 47A10, 47A15.

domain if it has a finite number of components and the boundary $\Gamma = \partial \Delta$ is a positively oriented finite system of closed, nonintersecting, rectifiable Jordan curves.

Throughout this paper T is a bounded linear operator mapping the underlying Banach space X into itself.

- 1.1. DEFINITION. A spectral decomposition of X by T is a finite system $\{(G_i, X_i)\}$ $\subset \mathfrak{G} \times \operatorname{Inv} T$, satisfying the following conditions:
- (i) $\{G_i\} \in \operatorname{cov} \sigma(T)$;
- (ii) $X = \sum_{i} X_{i}$;
- (iii) $\sigma(T | X_i) \subset \overline{G}_i$, for all i.
- 1.2. DEFINITION [1]. A map $E: \mathfrak{G} \to \operatorname{Inv} T$ is called a spectral resolvent of T if it satisfies the following conditions:
 - (I) $E(\emptyset) = \{0\};$
- (II) for any $\{G_i\} \in \text{cov}\,\sigma(T)$, $\{(G_i, E(G_i))\}$ is a spectral decomposition of X by T. Although the spectral resolvent fails to be unique, the properties they have in common characterize specific types of spectral decompositions. In this vein, we mention that an operator T having a spectral resolvent possesses the single valued

extension property [1] and, moreover, it is decomposable [8] in the sense of Foias [4].

The following types of invariant subspaces will be involved in our study.

1.3. DEFINITION [5]. A subspace Y of X is said to be analytically invariant under T if, for every function $f: D \to X$ analytic on some open $D \subset \mathbb{C}$, the condition

$$(\lambda - T) f(\lambda) \in Y$$
 on D

implies that $f(\lambda) \in Y$ on D.

An analytically invariant subspace is also invariant under T[6].

1.4. DEFINITION [4]. $Y \in \text{Inv } T$ is said to be a spectral maximal space of T if, for any $Z \in \text{Inv } T$, the inclusion $\sigma(T \mid Z) \subset \sigma(T \mid Y)$ implies that $Z \subset Y$.

If T has the single valued extension property then, for any set $S \subset \mathbb{C}$,

$$X_T(S) = \{x \in X : \sigma_T(x) \subset S\}$$

is a linear manifold in X. If T is a decomposable operator then, for any $G \in \mathfrak{G}$, $\overline{X_T(G)}$ is an analytically invariant subspace under T [5] and, for any closed $F \subset \mathbb{C}$, $X_T(F)$, in particular $X_T(\overline{G})$, is a spectral maximal space of T [4]. Moreover, for a decomposable T, we have

$$(1.1) \overline{G \cap \sigma(T)} \subset \sigma[T | X_T(\overline{G})] \subset \overline{G} \cap \sigma(T).$$

- 1.5. DEFINITION [9]. $Y \in \text{Inv } T$ is said to be a T-absorbent space if, for every $y \in Y$ and all $\lambda \in \sigma(T \mid Y)$, the equation $(\lambda T)x = y$ has all solutions x, if any, contained in Y.
- If T has the single valued extension property, then every T-absorbent space is analytically invariant under T.
- 1.6. PROPOSITION [2]. Let $\{(G_i, X_i)\}_{i=1,2}$ be a spectral decomposition of X by T in terms of T-absorbent spaces X_1 and X_2 . Then

$$\sigma(T | X_1 \cap X_2) \subset \sigma(T | X_1) \cap \sigma(T | X_2).$$

1.7. Proposition. If, for $X_1, X_2 \in \text{Inv } T, X = X_1 + X_2$ then

(1.2)
$$\sigma(T) \subset \sigma(T|X_1) \cup \sigma(T|X_2) \cup \sigma_n(T).$$

In particular, if T has the single valued extension property, then

$$\sigma(T) \subset \sigma(T|X_1) \cup \sigma(T|X_2).$$

PROOF. Let $\lambda \in \rho(T \mid X_1) \cap \rho(T \mid X_2) - \sigma_p(T)$ and $x \in X$. There is a representation for $x, x = x_1 + x_2$ with $x_i \in X_i$, i = 1, 2. For $y_i = R(\lambda; T \mid X_i)x_i$, i = 1, 2, and $y = y_1 + y_2$ we have

$$(\lambda - T)y = (\lambda - T)y_1 + (\lambda - T)y_2 = x_1 + x_2 = x_1$$

and hence $\lambda - T$ is surjective. Furthermore, since $\lambda \notin \sigma_p(T)$, we have $\lambda \in \rho(T)$. The last statement of the proposition follows from [3, Theorem 2]. \square

Property (1.1) of $X_T(\cdot)$ has an interesting variant in terms of a spectral resolvent E, expressed by [8, Proposition 16]. For completeness, we recall that property and provide it with a shorter proof.

1.8. Proposition. If T has a spectral resolvent E then, for any $G \in \mathfrak{G}$,

$$(1.3) \overline{G \cap \sigma(T)} \subset \sigma[T | E(G)].$$

PROOF. Let $\lambda \in G \cap \sigma(T)$ be given and let $H \in \mathfrak{G}$ be such that $\{G, H\} \in \operatorname{cov} \sigma(T)$ with $\lambda \notin \overline{H}$. Then X = E(G) + E(H) and Proposition 1.7 implies

(1.4)
$$\sigma(T) \subset \sigma[T|E(G)] \cup \sigma[T|E(H)].$$

Since $\lambda \in [G \cap \sigma(T)] - \overline{H}$, it follows from (1.4) that $\lambda \in \sigma[T \mid E(G)]$ and hence inclusion (1.3) holds. \square

If T has a spectral resolvent E, then T has a maximal spectral resolvent E_m in the sense that, for every $G \in \mathfrak{G}$ and all spectral resolvents E of T,

$$E(G) \subset E_m(G) = X_T(\overline{G}).$$

Since, clearly $\overline{X_T(G)} \subset X_T(\overline{G})$, where the inclusion may be proper, some spectral resolvents E may be such that

$$(1.5) \overline{X_T(G)} \subset E(G) \subset X_T(\overline{G}) \text{for all } G \in \mathfrak{G}.$$

Condition (1.5) endows E with some remarkable properties, which will be the topic of the following sections.

2. Monotonic spectral resolvents.

2.1. DEFINITION. A spectral resolvent E is said to be monotonic if $G_1, G_2 \in \mathfrak{G}$ and $\overline{G}_1 \subset G_2$ imply that $E(G_1) \subset E(G_2)$.

Note that (1.5) is a sufficient condition for a spectral resolvent E of T to be monotonic. In fact, if the open sets G_1 , G_2 are such that $\overline{G}_1 \subset G_2$, then (1.5) implies the inclusions

$$E(G_1) \subset X_T(\overline{G}_1) \subset \overline{X_T(G_2)} \subset E(G_2).$$

2.2. Theorem. Let T have a spectral resolvent E. If for any pair $G_1, G_2 \in \mathfrak{G}$, E satisfies condition

(2.1)
$$\sigma[T|E(G_1) \cap E(G_2)] \subset \overline{G}_1 \cap \overline{G}_2$$

then property (1.5) holds and E is monotonic.

PROOF. Given $G_1 \in \mathfrak{G}$, let $x \in X_T(G_1)$. Choose $G_2 \in \mathfrak{G}$ such that $\{G_1, G_2\} \in \operatorname{cov} \sigma(T)$ and $\sigma_T(x) \cap \overline{G_2} = \emptyset$ (this is possible because $\sigma_T(x)$ is closed and is contained in G_1). To avoid repetitions, we divide the remainder of the proof in two parts.

Part A. There is a representation of x,

$$x = x_1 + x_2$$
 with $x_i \in E(G_i)$, $i = 1, 2$.

In view of some elementary properties, the local spectra of x_1 and x_2 are contained in some pertinent sets

$$(2.2) \sigma_T(x_1) \subset \sigma_T(x) \cup (\overline{G}_1 \cap \overline{G}_2), \sigma_T(x_2) \subset \overline{G}_1 \cap \overline{G}_2.$$

For $\lambda \in \rho_T(x) \cap (\overline{G}_1 \cap \overline{G}_2)^c = H$, we have $x(\lambda) = x_1(\lambda) + x_2(\lambda)$. Let Δ be a Cauchy domain with boundary Γ such that $\sigma_T(x) \subset \Delta$ and $\overline{\Delta} \subset (\overline{G}_1 \cap \overline{G}_2)^c$. The functional calculus gives

(2.3)
$$x = \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) d\lambda = \frac{1}{2\pi i} \int_{\Gamma} x_1(\lambda) d\lambda.$$

For every $\lambda_0 \in \Gamma$, there is a neighborhood $V \subset H$ of λ_0 and there are functions f_i : $V \to E(G_i)$ (i = 1, 2) analytic on V such that

(2.4)
$$x_1(\lambda) = f_1(\lambda) + f_2(\lambda) \quad \text{on } V.$$

It follows from

$$(\lambda - T)x_1(\lambda) = x_1$$
 on $\rho_T(x_1)$,

that the function g: $V \to E(G_1) \cap E(G_2)$ defined by

$$g(\lambda) = x_1 - (\lambda - T)f_1(\lambda) = (\lambda - T)f_2(\lambda)$$

is analytic on V.

Part B. Since $V \subset (\overline{G}_1 \cap \overline{G}_2)^c \subset \rho[T \mid E(G_1) \cap E(G_2)]$, the function $h: V \to E(G_1) \cap E(G_2)$ defined by

$$h(\lambda) = R[\lambda; T | E(G_1) \cap E(G_2)] g(\lambda)$$

is analytic on V. We have

$$(\lambda - T)h(\lambda) = g(\lambda) = (\lambda - T)f_2(\lambda)$$
 on V

and hence the single valued extension property of T implies that

$$f_2(\lambda) = h(\lambda) \in E(G_1) \cap E(G_2) \subset E(G_1)$$
 on V .

Thus, by (2.4) $x_1(\lambda) \in E(G_1)$ on V and, in particular, $x_1(\lambda_0) \in E(G_1)$. Since λ_0 is arbitrary on Γ , it follows from (2.3) that $x \in E(G_1)$. Thus, $X_T(G_1) \subset E(G_1)$ and this establishes (1.5). Consequently, E is a monotonic spectral resolvent. \square

- 2.3. COROLLARY. Let E be a spectral resolvent of T. If for each $G \in \mathfrak{G}$, any one of the following conditions holds, then E is monotonic.
 - (1) $\sigma[T^* \mid E(G)^{\perp}] \subset G^c$;
 - (2) $\sigma[T/E(G)] \subset G^c$;
 - (3) E(G) is analytically invariant;
 - (4) E(G) is T-absorbent.

PROOF. Conditions (1)–(3) are equivalent [1]. Moreover, since T has the single valued extension property, every T-absorbent space is analytically invariant under T. Thus, it suffices to prove the statement of the corollary under hypothesis (4). Given $G_1, G_2 \in \mathfrak{G}$, Proposition 1.6 implies

$$\sigma[T|E(G_1)\cap E(G_2)]\subset \sigma[T|E(G_1)]\cap \sigma[T|E(G_2)]\subset \overline{G}_1\cap \overline{G}_2.$$

Now, Theorem 2.2 concludes the proof. \Box

2.4. COROLLARY. Let T have a spectral resolvent E. If $\sigma(T)$ has empty interior and $\rho_{\infty}(T) = \rho(T)$ (in particular, if $\sigma(T)$ is contained on an open Jordan curve), then E is monotonic.

PROOF. It suffices to show that for every $G \in \mathfrak{G}$, E(G) is analytically invariant under T. Let $f: D \to X$ be analytic on an open $D \subset \mathbb{C}$ such that for every $G \in \mathfrak{G}$,

$$(\lambda - T)f(\lambda) \in E(G)$$
 on D .

Since $\sigma(T)$ has empty interior, $D - \sigma(T)$ is a nonempty open set. Then, since $\rho_{\infty}(T) = \rho(T)$, we have

$$f(\lambda) = R(\lambda; T)(\lambda - T)f(\lambda) \in E(G)$$
 for all $\lambda \in D - \sigma(T)$

and $f(\lambda) \in E(G)$ on D, by analytic continuation. \square

As a summary of this section, the "spectral inclusion property" (1.5) and the "spectral invariance property" (2.1) proved to be sufficient conditions for a spectral resolvent E to be monotonic. By strengthening the monotonic spectral resolvent concept, (1.5) is heightened to a necessary and sufficient condition for the validity of the new monotonic attribute of a spectral resolvent.

3. Strongly monotonic spectral resolvents.

3.1. DEFINITION. A spectral resolvent E is said to be strongly monotonic if $G, G_1, G_2 \in \mathfrak{G}$ and $\overline{G}_1 \cap \overline{G}_2 \subset G$ imply $E(G_1) \cap E(G_2) \subset E(G)$.

Evidently, every strongly monotonic spectral resolvent is monotonic. As an example, if T has a spectral resolvent E then its maximal spectral resolvent E_m is strongly monotonic. Indeed, G, G_1 , $G_2 \in \mathfrak{G}$ and $\overline{G}_1 \cap \overline{G}_2 \subset G$ imply

$$E_m(G_1) \cap E_m(G_2) = X_T(\overline{G}_1) \cap X_T(\overline{G}_2) = X_T(\overline{G}_1 \cap \overline{G}_2) \subset X_T(\overline{G}_1) = E_m(G).$$

3.2. THEOREM. Let E be a spectral resolvent of T. E is strongly monotonic if and only if (1.5) holds for every $G \in \mathfrak{G}$.

PROOF. We only have to prove the "only if" part. Assume that E is strongly monotonic. Given $G \in \mathfrak{G}$, let $X \in X_T(G)$. Let $\{G_1, G_2\} \in \operatorname{cov} \sigma(T)$ be such that

$$\sigma_T(x) \subset G_1 \subset \overline{G} \subset G$$
 and $\sigma_T(x) \cap \overline{G}_2 = \emptyset$.

Follow verbatim Part A of the proof of Theorem 2.2. Let $K \in \mathfrak{G}$ be such that

$$\overline{G}_1 \cap \overline{G}_2 \subset K \subset \overline{K} \subset G$$
, $\overline{K} \cap \sigma_T(x) = \emptyset$ and $V \cap \overline{K} = \emptyset$.

E being strongly monotonic, we have $g(\lambda) \in E(K)$ on V. The function $h: V \to E(K)$ defined by $h(\lambda) = R[\lambda; T | E(K)]g(\lambda)$ is analytic on V and

$$(\lambda - T)h(\lambda) = (\lambda - T)f_2(\lambda)$$
 on V .

By the single valued extension property of T,

$$f_2(\lambda) = h(\lambda) \in E(K)$$
 on V .

E being monotonic, we have

$$x_1(\lambda) \in E(G_1) + E(K) \subset E(G)$$
 on V

and, in particular, $x_1(\lambda_0) \in E(G)$. Since λ_0 is arbitrary on Γ , it follows from (2.3) that $x \in E(G)$. Since x is arbitrary in $X_T(G)$, the proof concludes with $\overline{X_T(G)} \subset E(G)$. \square

Another characterization of a strongly monotonic spectral resolvent involves the range of the local resolvent function.

- 3.3. Theorem. Let E be a spectral resolvent of T. The following assertions are equivalent:
 - (i) E is strongly monotonic;
 - (ii) $G_1, G_2 \in \mathfrak{G}, \overline{G}_1 \subset G_2$ and $x \in E(G_1)$ imply $\{x(\lambda): \lambda \in \rho_T(x)\} \subset E(G_2)$.

PROOF. (i) \Rightarrow (ii): Let $G_1, G_2 \in \mathfrak{G}$ be such that $\overline{G}_1 \subset G_2$. By Theorem 3.2, we have (3.1) $E(G_1) \subset X_T(\overline{G}_1) \subset X_T(G_2) \subset E(G_2)$.

Let $x \in E(G_1)$ be given. Then $x \in X_T(\overline{G}_1)$ and since $X_T(\overline{G}_1)$ is a spectral maximal space of T, (3.1) implies

$$\{x(\lambda): \lambda \in \rho_T(x)\} \subset X_T(\overline{G}_1) \subset E(G_2).$$

(ii) \Rightarrow (i): Let $G \subset \mathbb{C}$ be an open set and let $x \in X_T(G)$. Choose $G_1 \in \mathfrak{G}$ such that $\sigma_T(x) \subset G_1 \subset \overline{G}_1 \subset G$. Let $G_2 \in \mathfrak{G}$ satisfy conditions

$$\sigma(T) \subset G_1 \cup G_2, \quad \sigma_T(x) \cap \overline{G}_2 = \varnothing.$$

Then x has a representation $x = x_1 + x_2$ with $x_i \in E(G_i)$, i = 1, 2. As obtained in an earlier proof, we have (2.2)

$$\sigma_T(x_1) \subset \sigma_T(x) \cup (\overline{G}_1 \cap \overline{G}_2), \quad \sigma_T(x_2) \subset \overline{G}_1 \cap \overline{G}_2.$$

Let Δ be a Cauchy domain with boundary $\Gamma \subset \rho_T(x) \cap (\overline{G}_1 \cap \overline{G}_2)^c$, such that $\sigma_T(x) \subset \Delta$ and $\overline{\Delta} \cap (\overline{G}_1 \cap \overline{G}_2) = \emptyset$. Then

(3.2)
$$x = \frac{1}{2\pi i} \int_{\Gamma} x(\lambda) d\lambda = \frac{1}{2\pi i} \int_{\Gamma} x_1(\lambda) d\lambda.$$

Since $x_1 \in E(G_1)$ and $\overline{G}_1 \subset G$, hypothesis (ii) implies

$${x_1(\lambda): \lambda \in \rho_T(x)} \subset E(G).$$

Then, by (3.2), $x \in E(G)$ and hence $X_T(G) \subset E(G)$. Now, Theorem 3.2 concludes the proof. \square

A further characterization of a strongly monotonic spectral resolvent can be obtained in terms of a localization property of the spectral resolvent. The following definition generalizes the concept of "almost localized spectrum" [10].

3.4. DEFINITION. A spectral resolvent E is said to be almost localized if $G, G_1, G_2 \in \mathfrak{G}$ and $\overline{G} \subset G_1 \cup G_2$ imply $E(G) \subset E(G_1) + E(G_2)$.

The following result is due to Radjabalipour [7].

3.5. PROPOSITION. If T is decomposable then, for every closed set F and $\{H_1, H_2\} \in \text{cov } F$, the following inclusion holds:

$$(3.3) X_T(F) \subset X_T(\overline{H}_1) + X_T(\overline{H}_2).$$

Since, for every open cover $\{H_1, H_2\}$ of F, there is $\{G_1, G_2\} \in \text{cov } F$ with $\overline{H}_1 \subset G_1$ and $\overline{H}_2 \subset G_2$, property (3.3) can be expressed as

$$(3.4) X_T(F) \subset \overline{X_T(G_1)} + \overline{X_T(G_2)}.$$

3.6. THEOREM. Let T have a spectral resolvent E. Then E is strongly monotonic if and only if E is almost localized.

PROOF. In view of Theorem 3.2, we have to show that the following conditions are equivalent:

- (i) $\overline{X_T(G)} \subset E(G)$ for all $G \in \mathfrak{G}$;
- (ii) $G, G_1, G_2 \in \mathfrak{G}$ and $\overline{G} \subset G_1 \cup G_2$ imply $E(G) \subset E(G_1) + E(G_2)$.
- (i) \Rightarrow (ii): Let $G, G_1, G_2 \in \emptyset$ be such that $\overline{G} \subset G_1 \cup G_2$. Since T is decomposable, (3.4) implies

$$E(G) \subset X_T(\overline{G}) \subset \overline{X_T(G_1)} + \overline{X_T(G_2)} \subset E(G_1) + E(G_2).$$

(ii) \Rightarrow (i): Given $G \in \mathfrak{G}$, let $x \in X_T(G)$. Further, let H_0 be a relatively compact, open neighborhood of $\sigma(T)$. Then

$$x \in X = E(H_0)$$
 and $\sigma_T(x) \subset \sigma(T) \subset H_0$.

Let ε be arbitrary, with $0 < \varepsilon < \sup_{\lambda \in \partial H_0} d[\lambda, \sigma_T(x)]$. Define the open sets

$$H = \left\{ \lambda \in \mathbb{C} : d[\lambda, \sigma_T(x)] < \epsilon \right\}, \quad H' = \left\{ \lambda \in \mathbb{C} : d(\lambda, H_0) < \frac{\epsilon}{6} \right\}.$$

For every $\lambda \in \overline{H'} \cap H^c$, let $D_{\lambda} = \{ \mu \in \mathbb{C} : |\mu - \lambda| < \varepsilon/3 \}$. Then $\{ D_{\lambda} : \lambda \in \overline{H'} \cap H^c \}$ is an open cover of $\overline{H'} \cap H^c$. Since $\overline{H'} \cap H^c$ is compact, there is a finite collection $\{\lambda_1, \lambda_2, \dots, \lambda_n\} \subset \overline{H'} \cap H^c$ such that

$$\overline{H'} \cap H^c \subset \bigcup_{i=1}^n D_i, \text{ where } D_i = D_{\lambda} \text{ for } \lambda = \lambda_i.$$

For $1 \le i \le n$, define

$$K_i = \left\{ \mu \in \mathbb{C} : |\mu - \lambda_i| < \frac{2}{3} \varepsilon \right\}, \quad \Delta_i = \left\{ \mu \in \mathbb{C} : |\mu - \lambda_i| < \frac{\varepsilon}{2} \right\}.$$

Clearly, $\overline{K}_i \cap \sigma_T(x) = \emptyset$, $1 \le i \le n$. Put

$$H_1 = \left\{ \lambda \in \mathbb{C} : d(\lambda, H_0) < \frac{\varepsilon}{9n} \right\} - \overline{\Delta}_1.$$

It is easy to see that $\overline{H}_1 \cap \overline{D}_1 = \emptyset$. Since

$$\overline{H}_0 \subset H_1 \cup \overline{\Delta}_1 \subset H_1 \cup K_1$$
,

we have

$$x \in E(H_0) \subset E(H_1) + E(K_1)$$
.

For $G_1 = H_1$, $G_2 = K_1$, follow Part A of the proof of Theorem 2.2. Note that the boundary Γ of the Cauchy domain Δ in Part A, verifies inclusions

$$\Gamma \subset \rho_{\infty}[T | E(K_1)] \subset \rho[T | E(H_1) \cap E(K_1)].$$

The function $h: V \to E(H_1) \cap E(K_1)$, defined by

$$h(\lambda) = R[\lambda; T | E(H_1) \cap E(K_1)]g(\lambda)$$

verifies equality

$$(\lambda - T)h(\lambda) = (\lambda - T)f_2(\lambda)$$
 on V ,

which implies

$$f_2(\lambda) = h(\lambda) \in E(H_1) \cap E(K_1)$$
 on V .

Thus, with reference to Part A, (2.4) implies that $x_1(\lambda) \in E(H_1)$ on V, and hence $x_1(\lambda_0) \in E(H_1)$. $\lambda_0 \in \Gamma$ being arbitrary, $x \in E(H_1)$ by (2.3).

Inductively, define

$$H_k = \{\lambda \in \mathbb{C}: d(\lambda, H_{k-1}) < \varepsilon/9n\} - \overline{\Delta}_k, \quad 1 \le k \le n.$$

Then $\{H_k, K_k\}$ covers \overline{H}_{k-1} and $\overline{H}_k \cap \overline{D}_i = \emptyset$, $1 \le i \le k$. In view of hypothesis (ii), $E(H_{k-1}) \subset E(H_k) + E(K_k)$, and the hypothesis $x \in E(H_{k-1})$ of the induction gives $x \in E(H_k) + E(K_k)$. As for k = 1, by using Part A of the proof of Theorem 2.2 and a conveniently defined function $h: V \to E(H_k) \cap E(K_k)$, we obtain $x \in E(H_k)$. Thus, by the inductive process, we obtain an open set H_n with the properties

$$x \in E(H_n)$$
 and $\overline{H}_n \subset H' - \left(\bigcup_{i=1}^n \overline{D}_i\right) \subset H$.

E being monotonic, $E(H_n) \subset E(H)$ and hence $x \in E(H)$. Since ε is arbitrarily small, we may choose it such that $\overline{H} \subset G$. Then $E(H) \subset E(G)$ and hence $x \in E(G)$. Since $x \in X_T(G)$ is arbitrary, we obtain $\overline{X_T(G)} \subset E(G)$. \square

REFERENCES

- 1. I. Erdelyi, Spectral resolvents, Operator Theory and Functional Analysis, Research Notes in Math., no. 38, Pitman Advanced Publishing Program, San Francisco, London, Melbourne, 1979, pp. 51-70.
 - 2. _____, Monotonic properties of some spectral resolvents, Libertas Math. 1 (1981), 117-148.
 - 3. J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- 4. C. Foiaş, Spectral maximal spaces and decomposable operators in Banach spaces, Arch. Math. (Basel) 14 (1963), 341-349.
- 5. S. Frunză, The single-valued extension property for coinduced operators, Rev. Roumaine Math. Pures Appl. 18 (1973), 1061-1065.
- 6. R. Lange, Strongly analytic subspaces, Operator Theory and Functional Analysis, Research Notes in Math., no. 38, Pitman Advanced Publishing Program, San Francisco, London, Melbourne, 1979, pp. 16-30.

- 7. M. Radjabalipour, Equivalence of decomposable and 2-decomposable operators, Pacific J. Math. 77 (1978), 243-247.
- 8. G. W. Shulberg, Spectral resolvents and decomposable operators, Operator Theory and Functional Analysis, Research Notes in Math., no. 38, Pitman Advanced Publishing Program, San Francisco, London, Melbourne, 1979, pp. 71–84.
- 9. F. H. Vasilescu, Residually decomposable operators in Banach spaces, Tôhoku Math. J. 21 (1969), 509-522.
- 10. _____, On the residual decomposability in dual spaces, Rev. Roumaine Math. Pures Appl. 16 (1971), 1573-1578.

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122

DEPARTMENT OF MATHEMATICS, NANJING UNIVERSITY, NANJING, CHINA